在某些病理情况下,如严重贫血、大量失血、呼吸障碍、肿瘤组织等,组织细胞也需通过糖酵解来获取能量。倘若糖酵解过度,可因乳酸产生过多,而导致酸中毒。 (五)糖酵解的调节 正常生理条件下,人体内的各种代谢受到严格而精确的调节,以满足机体的需要,保持内环境的稳定。这种控制主要是通过调节酶的活性来实现的。在一个代谢过程中往往催化不可逆反应的酶限制代谢反应速度,这种酶称为限速酶。糖酵解途径中主要限速酶是己糖激酶(HK),磷酸果糖激酶-1(PFK-1)和丙酮酸激酶(PK)。 1.激素的调节 胰岛素能诱导体内葡萄糖激酶、磷酸果糖激酶、丙酮酸激酶的合成,因而促进这些酶的活性,一般来说,这种促进作用比对限速酶的变构或修饰调节慢,但作用比较持久。 2.代谢物对限速酶的变构调节 上述三个限速酶中,起决定作用的是催化效率最低的酶PFK-1。其分子是一个四聚体形式,不仅具有对反应底物6-磷酸果糖和ATP的结合部位,而且尚有几个与别位激活剂和抑制剂结合的部位,6-磷酸果糖、1,6二磷酸果糖、ADP和AMP是其激活剂,而ATP、柠檬酸等是其抑制剂,ATP既可作为反应底物又可作为抑制剂,其原因在于:此酶一个是与作为底物的ATP结合位点,另一个是与作为抑制剂的ATP结合位点,两个位点对ATP的亲和力不同,与底物的位点亲和力高,抑制剂作用的位点亲和力低。对ATP有两种结合位点,这样,当细胞内ATP不足时,ATP主要作为反应底物,保证酶促反应进行,而当细胞内ATP增多时,ATP作为抑制剂,降低了酶对6-磷酸果糖的亲和力。 它在体内也是由6-磷酸果糖磷酸化而成,但磷酸化是在C2位而不是C4位,参与的酶也是另一个激酶,磷酸果糖激酶-2(PFK-2)。 2,6-二磷酸果糖可被二磷酸果糖磷酸酶-2去磷酸而生成6-磷酸果糖,失去其调节作用。2,6-二磷酸果糖的作用在于增强磷酸果糖激酶-1对6-磷酸果糖的亲和力和取消ATP的抑制作用(图4-3)。 图4-3 胰岛素浓度升高对肝细胞内2,6-二磷酸果糖浓度的影响 临床上丙酮酸激酶异常,可导致葡萄糖酵解障碍,红细胞破坏出现溶血性贫血。 二、糖的有氧氧化 葡萄糖在有氧条件下,氧化分解生成二氧化碳和水的过程称为糖的有氧氧化(aerobicoxidation)。有氧氧化是糖分解代谢的主要方式,大多数组织中的葡萄糖均进行有氧氧化分解供给机体能量。 (一)有氧氧化过程 糖的有氧氧化分两个阶段进行。第一阶段是由葡萄糖生成的丙酮酸,在细胞液中进行。第二阶段是上述过程中产生的NADH+H+和丙酮酸在有氧状态下,进入线粒体中,丙酮酸氧化脱羧生成乙酰CoA进入三羧酸循环,进而氧化生成CO2和H2O,同时NADH+H+等可经呼吸链传递,伴随氧化磷酸化过程生成H2O和ATP,下面主要将讨论有氧氧化在线粒体中进行的第二阶段代谢。 1.丙酮酸的氧化脱羧 催化氧化脱羧的酶是丙酮酸脱氢酶系(pyruvate dehydrogenase system),此多酶复合体括丙酮酸脱羧酶,辅酶是TPP,二氢硫辛酸乙酰转移酶,辅酶是二氢硫辛酸和辅酶A,还有二氢硫辛酸脱氢酶,辅酶是FAD及存在于线粒体基质液中的NAD+,多酶复合体形成了紧密相连的连锁反应机构,提高了催化效率。 从丙酮酸到乙酰CoA是糖有氧氧化中关键的不可逆反应,催化这个反应的丙酮酸脱氢酶系受到很多因素的影响,反应中的产物,乙酰CoA和NADH++H+可以分别抑制酶系中的二氢硫辛酸乙酰转移酶和二氢硫辛酸脱氢酶的活性,丙酮酸脱羧酶(pyruvate decarboxylase,PDC)活性受ADP和胰岛素的激活,受ATP的抑制。 丙酮酸脱氢反应的重要特征是丙酮酸氧化释放的自由能贮存在乙酰CoA中的高能硫酯键中,并生成NADH+H+(图4-4)。? 图4-4 丙酮酸脱氢酶复合物的作用机制 2.三羧酸循环(tricarboxylic acid cycle) 乙酰CoA进入由一连串反应构成的循环体系,被氧化生成H2O和CO2。由于这个循环反应开始于乙酰CoA与草酰乙酸(oxaloacetate)缩合生成的含有三个羧基的柠檬酸,因此称之为三羧酸循环或柠檬酸循环(citric acid cycle)。其详细过程如下: (1)乙酰CoA进入三羧酸循环 乙酰CoA具有硫酯键,乙酰基有足够能量与草酰乙酸的羧基进行醛醇型缩合。首先从CH3CO基上除去一个H+,生成的阴离子对草酰乙酸的羰基碳进行亲核攻击,生成柠檬酰CoA中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行。该反应由柠檬酸合成酶(citrate synthetase)催化,是很强的放能反应。 由草酰乙酸和乙酰CoA合成柠檬酸是三羧酸循环的重要调节点,柠檬酸合成酶是一个变构酶,ATP是柠檬酸合成酶的变构抑制剂,此外,α-酮戊二酸、NADH能变构抑制其活性,长链脂酰CoA也可抑制它的活性,AMP可对抗ATP的抑制而起激活作用。 (2)异柠檬酸形成 柠檬酸的叔醇基不易氧化,转变成异柠檬酸而使叔醇变成仲醇,就易于氧化,此反应由顺乌头酸酶催化,为一可逆反应。 (3)第一次氧化脱酸 在异柠檬酸脱氢酶作用下,异柠檬酸的仲醇氧化成羰基,生成草酰琥珀酸(oxalosuccinate)的中间产物,后者在同一酶表面,快速脱羧生成α-酮戊二酸(α?ketoglutarate)、NADH和CO2,此反应为β-氧化脱羧,此酶需要Mn2+作为激活剂。? 此反应是不可逆的,是三羧酸循环中的限速步骤,ADP是异柠檬酸脱氢酶的激活剂,而ATP,NADH是此酶的抑制剂。 (4)第二次氧化脱羧 在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰CoA、NADH+H+和CO2,反应过程完全类似于丙酮酸脱氢酶系催化的氧化脱羧,属于α?氧化脱羧,氧化产生的能量中一部分储存于琥珀酰CoA的高能硫酯键中。 α-酮戊二酸脱氢酶系也由三个酶(α-酮戊二酸脱羧酶、硫辛酸琥珀酰基转移酶、二氢硫辛酸脱氢酶)和五个辅酶(TPP、硫辛酸、HSCoA、NAD+、FAD)组成。? 此反应也是不可逆的。α-酮戊二酸脱氢酶复合体受ATP、GTP、NAPH和琥珀酰CoA抑制,但其不受磷酸化/去磷酸化的调控。 (5)底物磷酸化生成ATP 在琥珀酸硫激酶(succinate thiokinase)的作用下,琥珀酰CoA的硫酯键水解,释放的自由能用于合成GTP,在细菌和高等生物可直接生成ATP,在哺乳动物中,先生成GTP,再生成ATP,此时,琥珀酰CoA生成琥珀酸和辅酶A。?
(6)琥珀酸脱氢 琥珀酸脱氢酶(succinate dehydrogenase)催化琥珀酸氧化成为延胡索酸。该酶结合在线粒体内膜上,而其他三羧酸循环的酶则都是存在线粒体基质中的,这酶含有铁硫中心和共价结合的FAD,来自琥珀酸的电子通过FAD和铁硫中心,然后进入电子传递链到O2,丙二酸是琥珀酸的类似物,是琥珀酸脱氢酶强有力的竞争性抑制物,所以可以阻断三羧酸循环。? (7)延胡索酸的水化 延胡索酸酶仅对延胡索酸的反式双键起作用,而对顺丁烯二酸(马来酸)则无催化作用,因而是高度立体特异性的。? (8)草酰乙酸再生 在苹果酸脱氢酶(malic dehydrogenase)作用下,苹果酸仲醇基脱氢氧化成羰基,生成草酰乙酸(oxalocetate),NAD+是脱氢酶的辅酶,接受氢成为NADH+H+(图4-5)。 图4-5 三羧酸循环? 三羰酸循环总结:? 乙酰CoA+3NADH++FAD+GDP+Pi+2H2O?—→ 2CO2+3NADH+FADH2+GTP+3H+ +CoASH? ①CO2的生成,循环中有两次脱羧基反应(反应3和反应4)两次都同时有脱氢作用,但作用的机理不同,由异柠檬酸脱氢酶所催化的β?氧化脱羧,辅酶是NAD+,它们先使底物脱氢生成草酰琥珀酸,然后在Mn2+或Mg2+的协同下,脱去羧基,生成α-酮戊二酸。 α-酮戊二酸脱氢酶系所催化的α?氧化脱羧反应和前述丙酮酸脱氢酶系所催经的反应基本相同。 应当指出,通过脱羧作用生成CO2,是机体内产生CO2的普遍规律,由此可见,机体CO2的生成与体外燃烧生成CO2的过程截然不同。 ②三羧酸循环的四次脱氢,其中三对氢原子以NAD+为受氢体,一对以FAD为受氢体,分别还原生成NADH+H+和FADH2。它们又经线粒体内递氢体系传递,最终与氧结合生成水,在此过程中释放出来的能量使ADP和Pi结合生成ATP,凡NADH+H+参与的递氢体系,每2H氧化成一分子H2O,生成3分子ATP,而FADH2参与的递氢体系则生成2分子ATP,再加上三羧酸循环中有一次底物磷酸化产生一分子ATP,那么,一分子CH2CO?SCoA参与三羧酸循环,直至循环终末共生成12分子ATP。 ③乙酰CoA中乙酰基的碳原子,乙酰CoA进入循环,与四碳受体分子草酰乙酸缩合,生成六碳的柠檬酸,在三羧酸循环中有二次脱羧生成2分子CO2,与进入循环的二碳乙酰基的碳原子数相等,但是,以CO2方式失去的碳并非来自乙酰基的两个碳原子,而是来自草酰乙酸。 ④三羧酸循环的中间产物,从理论上讲,可以循环不消耗,但是由于循环中的某些组成成分还可参与合成其他物质,而其他物质也可不断通过多种途径而生成中间产物,所以说三羧酸循环组成成分处于不断更新之中。 例如 草楚酰乙酸——→天门冬氨酸 α-酮戊二酸——→谷氨酸 草酰乙酸——→丙酮酸——→丙氨酸 其中丙酮酸羧化酶催化的生成草酰乙酸的反应最为重要。
因为草酰乙酸的含量多少,直接影响循环的速度,因此不断补充草酰乙酸是使三羧酸循环得以顺利进行的关键。 (责任编辑:泉水) |