我们热爱生命科学!-生物行

第十六章 常用分析技术在临床生物化学中的应用- -第一节 光谱分析技术的应用(2)

时间:2006-07-22 22:14来源:大众医药网 作者:admin 点击: 500次

  多组分混合物在荧光分析也可根据荧光峰相距情况采取不同的方法,如各组分荧光峰相距颇远,可分别在不同波长测定各个组分的荧光强度,然后直接求出各组分浓度。如果各组分荧光光谱相互重叠,利用荧光强度的加和性质,在适宜荧光波长处,测得混合物的荧光强度,再根据被测物质各自在适宜波长处的最大荧光强度,列出联立方程式求算各自的含量。

  对较高浓度的荧光物质可用差示荧光法测定。

  (3)荧光分析技术的应用:荧光分析法灵敏度高,选择性好、取样量少,因此已广泛应用于各领域,在临床生化检验方面可用于某些无机物与有机物的分析。

  无机化合物能直接产生荧光并用于测定的为数不多,但与有机试剂络合后进行荧光分析的元素已达60余种,常见无机物的荧光测定见表16-2。

表16-2 常见无机物的荧光测定

元素 荧光试剂 激发波长(nm) 荧光波长(nm) 灵敏度(μg/ml)
Ag 四氯荧光素 540 580 0.1
Al 桑色素 430 500 0.1
Br 荧光素 440 470 0.002
Ca 乙二醛-双-(4-羟苄基腙) 453 523 0.0004
Cl 荧光素+AgNO3  254 505 0.002
CN 2',7'-双(乙酸基汞)荧光素 500 650 0.1
Fe 曙红+1,10-二氮杂非 540 580 0.1
Pb 曙红+1,10-二氮杂非 540 580 0.1
Zn 8-羟基喹啉 365 520 0.5
F 石榴茜互R-AI络合物 470 500 0.001

  某些有机化合物的荧光测定应用较多,如糖类、胺类、甾族化合物、DNA与RNA、酶与辅酶、维生素等。常见有机化合物的荧光测定法见表16-3。

表16-3 常用有机化合物荧光测定法

待测物 试剂 激发波长(nm) 荧光波长(nm) 灵敏度(μg/ml)
核酸 溴化乙啶 360-365 580-590 0.1
蛋白质 曙红y 紫外 540 0.06
氨基酸 氧化酶等 315 425 0.01
肾上腺素 乙二胺 420 525 0.001
NAD(P)H 自身为荧光物质 340 450 10-6mol/L
ATP 已糖激酶、6-磷酸葡萄糖脱氢酶、6-磷酸葡萄糖 340 450 2×10-6mol/L
维生素A 无水乙醇 345 490 0.001

  2、火焰光度法火焰光度法是利用火焰中激发态原子回降至基态时发射的光谱强度进行含量分析的方法。它在仪器结构和分析操作上与火焰原子吸收法相似。

  在火焰光度法中,试液和助燃气一起进入雾化室,雾化后喷入火焰,雾粒在火焰中蒸发和激发,激发态原子降落到低能态时发生光辐射,经单色器分光后到达检测器,然后由显示系统显示其发射光强度。

  试样中的待测元素激发态原子的发射光强度I与该元素浓度C成正比关系,即I=aC。式中a为常数。a与试样的组成、蒸发和激发过程有关。

  火焰光度法同样存在各种因素干扰,如供气压力,试样导入量、有机溶剂和无机酸的影响,以及金属元素间的相互作用等,某些干扰因素的消除方法同原子吸收法。对于金属离子间的相互作用可以下述方法予以消除:

  (1)阳离子的干扰:第二阳离子的存在可使待测阳离子的电离作用降低而导致以元素形式存在居多,结果发射强度增大,这种现象称为阳离子增强效应。例如测定钙时有钾存在,钾可抑制钙的电离,干扰钙的测定。消除这种干扰的办法是在标准溶液及试样中加入本身易电离的金属如铯和锂。

  (2)阴离子干扰:草酸根、磷酸根和硫酸根可与某些阳离子在火焰温度下形成仅能缓慢蒸发的化合物而抑制原子激发,结果导致待测元素发射强度降低。消除这种干扰的办法是用释放剂。释放剂的作用是同干扰阴离子牢固结合,使待测阳离子的激发行为不受干扰,或与待测阳离子形成更稳定而易挥发的配合物。故尽量避免使用磷酸、硫酸、草酸做试剂。

  此外,应避免环境污染测试体系。使用的器皿应为塑料制品以防止玻璃器皿中金属溶出干扰测定。

  火焰光度法通常采用的定量方法有标准曲线法、标准加入法和内标法。临床检验工作中前两种应用较多,而且测定血液或血清中钠和钾已成常规。应用火焰光度法测定某些元素的波长及检测限见表16-4。

表16-4 火焰光度法测定某些元素的波长与检测限

元素 测定波长(A) 检测限(mg/L) 元素 测定波长(A) 检测限(mg/L)
Li 6708 10-4  Ca 4227 3×10-3 
Na 5890 10-4  Sr 4607 0.02
K 7665 10-3  Ba 4934 0.2
Rb 7800 0.05 Mg 3852 0.1
Cs 8521 1.0      

  (三)散射光谱分析法

  散射光谱分析法主要测定光线通过溶液混悬颗粒后的光吸收或光散射程度的一类定量方法。测定过程与比色法类同,常用法为比浊法。但颗粒的大小和形状及悬液的稳定性对比浊结果有较大的影响,因此不能完全按比色法的规律进行测定,否则就会引起误差。

  1、仪器和测定方法 由于测定仪器和方法的不同,比浊法又可分为散射测浑法(turbidimetry)和浊度测定法(nephelometry)二类。前者利用一般的光电比色计和分光光度计,其原理是利用光线通过混悬溶液时,由于颗粒的散射使通过的光线减弱,根据光线减弱的程度测定溶液中颗粒的浓度,所以,实际上可将散射测浑法看成是比色分析的一种特殊情况。后者则是直接测定混悬溶液中颗粒散射光的强度,由于一般光电比色计中光源和光电管在一直线上,无法测定散射光线的强度,需要特殊的浊度计,如激光比浊仪。测定方法可采用速率法或终点法进行。

  速率散射比浊法是一种动力学测定方法,1977年由Seternbery首先用于免疫测定,在一定条件下,抗原和相应的抗体很快结合成抗原抗体免疫复合物颗粒,速率比浊法就是在一定时间内抗原抗体结合过程中,测定二者结合的最大反应速度,即反应达顶峰峰值。终点散射比浊法用于免疫测定时,在一定时间内,通常是抗原抗体反应达到平衡,复合物的浊度不再受时间的影响,但必须在聚合形成絮状沉淀之前进行浊度测定。

  2、影响比浊法测定的因素比浊法的突出问题是颗粒的大小对浊度和浊度曲线有较大的影响。因此,在比浊法中必须力求作到:①混悬液中微粒的分散度也就是颗粒的大小应尽可能相同,并易重复。标准管和测定管中颗粒大小应力求一致。②混悬液在一定时间内,至少10分钟内应维持稳定,也就是颗粒应该不易相互聚集,变粗变大。为此,关键在于制备混悬液必须严格控制条件,一般应注意;①沉淀剂或抗体的浓度,一般情况下浊度随其浓度的增高而增大。②混匀方法和速度,一般而言,缓慢加入试剂,逐滴加入,不断摇匀,易产生粗颗粒沉淀;而迅速加入,迅速摇匀,易产生胶态溶液。③温度,温度升高可加快分子间的碰撞,常使某些在室温细小均匀的颗粒易变为粗大的絮状沉淀。④pH溶液,pH可影响沉淀的形成及颗粒的大小,如蛋白质、酶类,在其等电点pH值时最易形成颗粒并沉淀。⑤混悬液的稳定性和测定时间,大多数混悬液随放置时间的延长颗粒变粗而沉淀,吸光度下降,因此应及时比浊。如出现沉淀太快,可以加入保护性胶体,如聚乙烯吡咯烷酮、表面活性剂等,但应注意加入后可能会引起颗粒及光学性质的变化。⑥其它电解质和非电解质存在的干扰。由此可见,比浊法易受外界各种因素的影响,因此在建立一种比浊测定方法时,必须认真探索其反应规律,力求控制各种影响因素以克服比浊法重复性和准确性较差的缺点。

(责任编辑:泉水)
顶一下
(19)
100%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片